Deep Ordinal Regression Based on Data Relationship for Small Datasets
نویسندگان
چکیده
Ordinal regression aims to classify instances into ordinal categories. As with other supervised learning problems, learning an effective deep ordinal model from a small dataset is challenging. This paper proposes a new approach which transforms the ordinal regression problem to binary classification problems and uses triplets with instances from different categories to train deep neural networks such that high-level features describing their ordinal relationship can be extracted automatically. In the testing phase, triplets are formed by a testing instance and other instances with known ranks. A decoder is designed to estimate the rank of the testing instance based on the outputs of the network. Because of the data argumentation by permutation, deep learning can work for ordinal regression even on small datasets. Experimental results on the historical color image benchmark and MSRA image search datasets demonstrate that the proposed algorithm outperforms the traditional deep learning approach and is comparable with other state-ofthe-art methods, which are highly based on prior knowledge to design effective features.
منابع مشابه
A Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملDeep vs. Diverse Architectures for Classification Problems
This study compares various superlearner and deep learning architectures (machinelearning-based and neural-network-based) for classification problems across several simulated and industrial datasets to assess performance and computational efficiency, as both methods have nice theoretical convergence properties. Superlearner formulations outperform other methods at small to moderate sample sizes...
متن کاملUnimodal Probability Distributions for Deep Ordinal Classification
Probability distributions produced by the crossentropy loss for ordinal classification problems can possess undesired properties. We propose a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via the use of the Poisson and binomial probability distributions. We evaluate this approach in the context of deep learning on two large ordinal image datas...
متن کاملAn ensemble of Weighted Support Vector Machines for Ordinal Regression
Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM’s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017